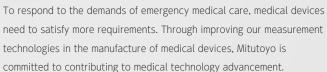

Mitutoyo

CNC Vision Measuring System Quick Vision Series

Catalog No. E14028

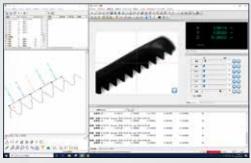

MEDICAL

Three unique Mitutoyo features supporting high reliability 《Medical》

Ultra-small

Medical devices requiring high accuracy

Medical devices directly affect people's health and life. Therefore, their every part requires strict adherence to demanding accuracy specifications. The lens and forceps of an endoscope, for example, are installed in a tip with a minimum diameter of 3 mm. With a maximum of 4,300X magnification, various types of auto focus, and high resolution enabling edge detection, the Quick Vision Series helps you measure objects without making contact in applications that require accuracy at the most minute level. Its improved repeatability and technical measurement capabilities have been proven equivalent to those of the global standard.


Example of measuring a valve used in medical equipment

Optimized optical system for ultra-small dimension measurement

Through combining ten different objective lenses with the built-in imaging lens, a maximum of 150X optical magnification (4,300X total on-monitor magnification) can be achieved. This enables measurement of ultra-small parts, such as medical device components.

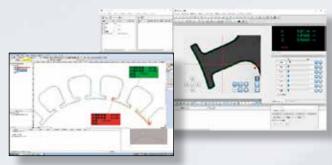
Example of image measurement of medical forceps

High-accuracy 3D measurement

High-accuracy height measurement using single-focus high-resolution images and PFF (Point From Focus) enable 3D capturing of the object shape, thereby expanding the scope of measurement.

3D analysis of the shape captured by PFF MCubeMap

AUTOMOBILE


Three unique Mitutoyo features supporting high reliability 《Automobile》

Cutting-edge

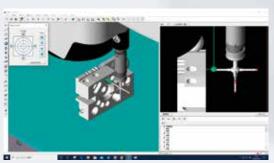
Flexible measurement of new parts for electric vehicles

With increasing demand for reducing greenhouse gas emissions, automobile production is shifting from gas and diesel vehicles to electric vehicles, causing the key automobile parts to become motors, batteries and semiconductors at an increasingly rapid rate.

The Quick Vision Series is optimal for use in the manufacturing processes of, for example, pre-stacking motor core parts that are thin and difficult to touch for measurement, fuel cell separators that have minute surface irregularities and require very-low-speed measurement, and semiconductor parts of inverters that require high-speed measurement of microscopic features.

Example of comparison of measurement results with design values

Meeting the rigorous quality control standards of the automobile industry


Introduction of CASE technologies will drive the demand for electronic and semiconductor parts in the automobile industry. Quick Vision helps quality control within the automobile industry by providing both contact and non-contact technologies.

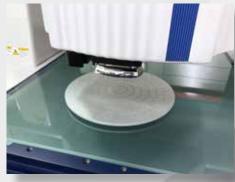
Example of measuring an engine control unit

Offline teaching from a 3D CAD model

In addition to the existing function for creating programs from 3D CAD model images, we have developed offline programming. This makes it possible to create a program offline from an image or with a touch probe. This means you can increase up-time of the QV main unit and shorten production lead times.

Offline teaching from a 3D CAD model

Mitutoyo


ELECTRONIC PARTS

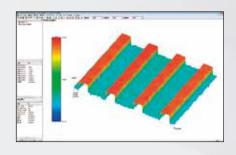
Three unique Mitutoyo features supporting high reliability 《Semiconductor》

Full automation

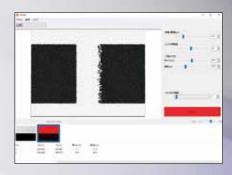
Continuous measurement during mass production

The shift of production to electric vehicles, expansion of services promoted by commercialized 5G, and recovery of capital investment in data centers are all boosting signs of recovery in the semiconductor market. The market is expected to show more growth and be ready for mass production to meet increasing demand. QV STREAM PLUS of the Quick Vision Series synchronizes main unit operation with the strobe of the camera used for measuring and thus enables high-speed measurements to enhance the productivity of semiconductor manufacturing. For example, the stage keeps moving without stopping while the system measures many pores on the showerhead to check for dimensional errors or foreign substances, which can significantly reduce the takt time.

See video from here


Preventing nonconformities during mass production

Continuous measurement by QV STREAM PLUS and quick focusing by TAF can deliver high-speed measurement. You can prevent nonconforming final products by increasing the number of features to


3D measurement with multiple sensors

Surface texture and cross-section texture can be analyzed by combining vision measurement, the non-contact displacement sensor, PFF (Point From Focus), and WLI (White Light Interferometer).

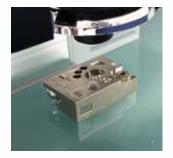
Flaw Inspection Software DDPAK

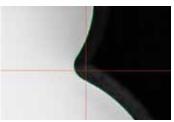
DDPAK, the flaw inspection software, allows for use of the flaw inspection function to detect contaminants, burrs, cracks, etc., in addition to dimension measurement. You can find flaws that cannot be detected by typical dimension measurement.

TECHNOLOGY

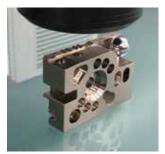
Rich functionality supporting various kinds of measurement

The Quick Vision Series has realized high-level integration of the measurement technologies that Mitutoyo has built up over the years. By combining the standard objective lenses, special software (QVPAK), and various optional components, it provides a wide range of functions to support various kinds of measurement. While meeting the growing requirements of measurement environments, it continues to improve these functions to strongly support you in solving your challenges.

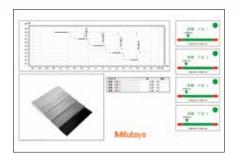

Measuring a tridimensional object without moving it Touch Trigger Probe

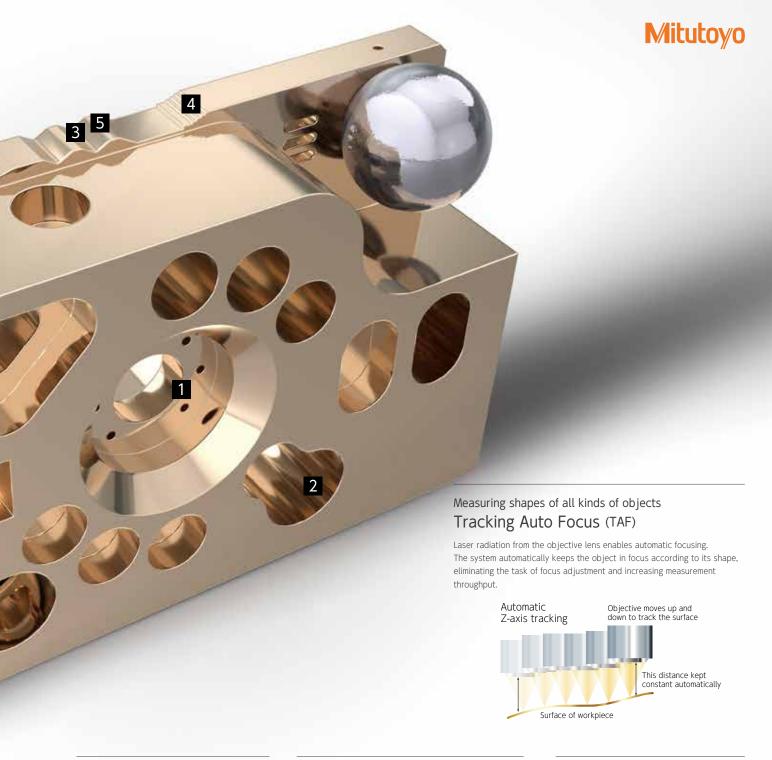

By also using the touch trigger probe, the system can capture a tridimensional object by measuring its sides at a given height without rotating it, which was difficult to do in the past.

2 Various image processing functions Vision measurement

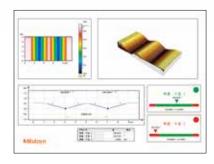

A magnified image captured through the optical lens is displayed on a PC screen. Various functions including edge detection and auto focus can be used for dimension measurement (common to all models).

3 Non-contact measurement of an acute angle and transparent object CPS Probe

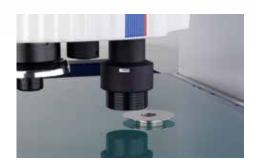

Differences in the focal length of the white light source are used to measure an acute angle. On the other hand, thickness of a thin, transparent object is measured by simultaneous detection of surface heights at two points on the object.



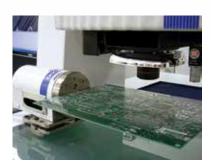
4 Capturing microscopic features of a 3D object using white light interference White Light Interferometer


Using the white light interference that occurs between the system and the object, the system performs high-accuracy 3D measurement for surface texture analysis (roughness, etc.) and shape measurement (irregularities of several μ m) in a minute area.

5 3D measurement with multiple cross-section images PFF (Point From Focus)

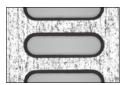

Scanning the object by raising the objective lens can capture multiple cross-section images (image contrasts) at different heights. You can obtain 3D shape data from such images.

High-speed non-contact measurement of minute height difference and curved shape


Laser Probe

The laser confocal method that is less affected by the color of the object has been adopted. The sensor scans the object to capture the surface shape data in a non-contact manner.

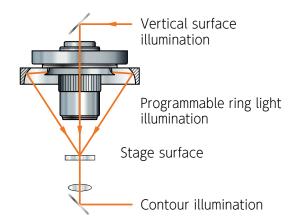
Simple measurement procedure $QV\ Index$


The indexing table turns the object to enable automatic measurement of multiple surfaces in a single setup.

Mitutoyo

Highly Functional Illumination Unit

- · QV-PROs use LEDs for all of their light sources: contour, vertical surface, and programmable
- · Lighting uniformity has been achieved at a high level, which leads to excellent part program compatibility between multiple QVs.
- · LED light sources have excellent responsiveness, which improves measurement throughput.
- · LED light sources have longer lives than halogen types, which reduces illumination fluctuations and thereby minimizes any errors caused by changes in light intensity.

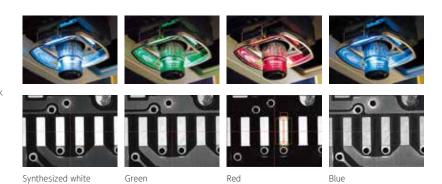

Vertical surface illumination

illumination

Programmable Ring Light (PRL)

Changing the positions of the two curved mirrors sets the ring light's obliquity to any chosen value between 30° and 80°. This is effective for enhancing the edges of inclined surfaces or very small steps.

Furthermore, the PRL light's illumination can be controlled independently in every direction, front and back, right and left. This makes it possible to configure highly variable lighting settings to match measurement locations.

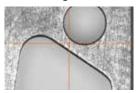


White LED model/Color LED model

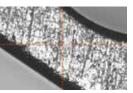
QV Apex and Hyper QV are available as a white LED model or color LED model.

The color LED model emphasizes edge contrast between different colors of the object, for example between copper track and plated parts on a printed circuit board. It provides high reproducibility in edge detection.

The picture shows a color LED model demonstrating the contrast-enhancing effects of colored illumination.


Programmable Power Turret

The QV's programmable power turret has excellent magnification repeatability which makes it suited to highly accurate measurements. The standard specification permits three steps of magnification: 1X, 2X and 6X*.

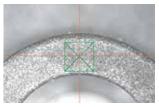

The rich lineup of objectives contains lenses with magnifications ranging from 0.5X to 25X, which makes it possible to select the optimal optical system to match the measurement target. It is possible to install additional objectives after purchase of main

* The customized specification permits three or four steps of magnification: 1X, 2X and 4X; or 1X, 2X, 4X and 6X.

When using QV-HR1X

Turret 1X Field of view: 6.27×4.70 mm Turret 2X Field of view: 3.13×2.35 mm Turret 6X Field of view: 1.04×0.78 mm

When using QV-HR10X



Turret 1X Field of view: 0.62×0.47 mm Turret 2X Field of view: 0.31×0.23 mm Turret 6X Field of view: 0.10×0.07 mm

High-Performance Multi-Auto Focus

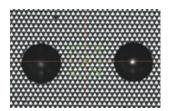
The QV Series is equipped with a high-performance image auto focus function as standard. Image auto focus is used to guarantee accuracy. Thanks to the availability of various auto focus tools, the optimal focus for each surface texture and measured feature can be selected, which makes it possible to perform highly reliable height measurements.

Furthermore, auto focus operates at high speed, which increases total measurement throughput.

Plastic-molded product

Surface focus

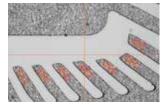
Image auto focus can be used to measure the height of a chosen area, which makes it possible to perform stable height measurements that are minimally affected by the roughness of machined surfaces and other similar surfaces.



Chamfered part of a machined surface

Edge focus

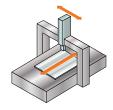
Edge focus is suited to focusing edges that have been chamfered or that have a corner radius. Using this focus tool prior to performing edge detection improves edge detection reproducibility.



IC package

Pattern focus

Auto focus can be performed on low-contrast transparent objects, such as film, glass and mirrored surfaces by projecting onto the object surface a pattern placed within the light path.

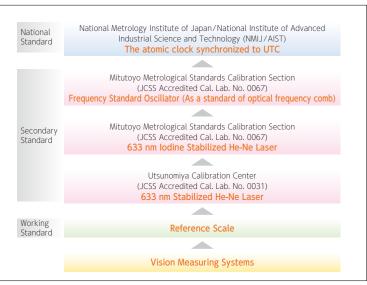


Multi-point auto focus

Multi-point auto focus can be used to set multiple focus positions, sizes, and angles to arbitrary values. This tool can be used to obtain multiple sets of height information with a single focus operation, which makes it possible to perform highly efficient height and flatness measurements.

Well-designed structure for high-accuracy measurement

Y-axis table moving mechanism with fixed bridge has been adopted to the basic structure of main unit. Structural deformation caused by movement along each axis has been minimized, which ensures that the Quick Vision Series can be used to perform highly accurate measurements with minimal spatial coordinate distortions.


What is true traceability?

Adopting reference instruments traceable to the national standard

To build customer trust, we adhere to traceability to the national standard. $% \left(1\right) =\left(1\right) \left(1$

- Mitutoyo's calibration artifacts and instruments that are used to establish machine accuracy specifications are maintained in a continuous chain of traceability to national dimensional standards. This is our customers' assurance of reliable measurement.
- Our calibration service provider is JCSS certified by IAJapan, which is a certifying body internationally accredited by ILAC in accordance with MRA (Mutual Recognition Arrangement). It has been qualified for measurement techniques equivalent to those of international calibration organizations.

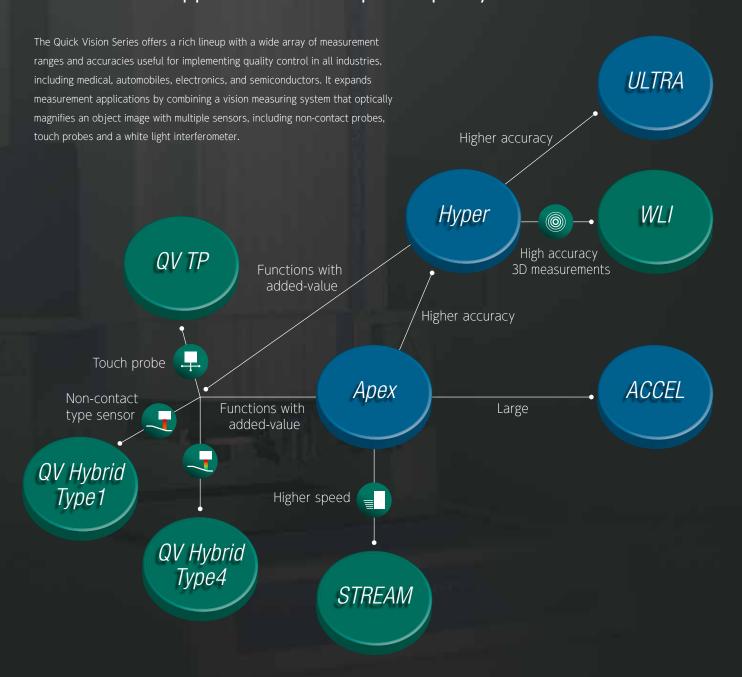
Note: The chart on the right shows an outline of traceability for the vision measuring machine.

Capable of Supporting ISO10360-7 Guaranteed Accuracy

Some models in the Quick Vision Series support the ISO10360-7: 2011 guaranteed accuracy specifications.

Guaranteed accuracies

· Length measurement error


Probing error
 PF2D, MPE

Eu. MPE

L/NE-UP

A wide array of variations and systems available to broaden measurement applications and improve quality control.

QV Apex

Standard CNC Vision Measuring System

QV Apex 302

- QV Series standard models range in size from compact to large.
- We offer a model with tracking auto focus that can quickly focus on the object and thus improve throughput significantly.
- There are a general-purpose model with white LED light and an enhanced edge detection model with RGB color LEDs.

Model			QV Apex 302			QV Apex 404			QV Apex 606	
Order No.		QV-X302P1L-D	QV-X302T1L-D	QV-X302P1C-D	QV-X404P1L-D	QV-X404T1L-D	QV-X404P1C-D	QV-X606P1L-D	QV-X606T1L-D	QV-X606P1C-D
Measuring range		300×200×200 mm			400×400×250 mm			600×650×250 mm		
Observation unit*	1				Programm	able power turre	t 1X-2X-6X			
Tracking Auto Foo	cus device	_	✓	_	-	✓	_	_	✓	-
	Contour illumination		White LED		White LED			White LED		
Illumination unit	Vertical surface illumination	White LED		Color LED	White LED		Color LED	White LED		Color LED
	PRL	White LED		Color LED	White LED		Color LED	White	LED	Color LED
Resolution of scal	е	0.1 μm								
	E1x, E1Y		(1.5 + 3L/1000) μm							
Vision measuring accuracy*2	E _{1Z}		(1.5 + 4L/1000) μm							
	E ₂ XY		(2.0 + 4L/1000) μm							
LAF Repeatability		_	<i>σ</i> ≤0.8 μm	_	_	<i>σ</i> ≤0.8 μm	_	_	<i>σ</i> ≤0.8 μm	_
Model with touch probe		QVT1-X302P1L-D	QVT1-X302T1L-D	QVT1-X302P1C-D	QVT1-X404P1L-D	QVT1-X404T1L-D	QVT1-X404P1C-D	QVT1-X606P1L-D	QVT1-X606T1L-D	QVT1-X606P1C-D
TP measuring accuracy*2	E1x, E1Y, E1z				(1.8 + 3L/1000) μ	m			

^{*1} Programmable power turret 1X-2X-4X model and 1X-2X-4X-6X model are available to special order. *2 Determined by Mitutoyo's inspection method.

Hyper QV

High-accuracy CNC Vision Measuring System

throughput significantly.

• The Hyper QV is a highly accurate model that is

equipped with a high-resolution/accuracy scale.

- There are a general-purpose model with white LED light and an enhanced edge detection model with RGB color LEDs.
- We offer a model with tracking auto focus that can • This model is standard-equipped with an automatic quickly focus on the object and thus improve temperature compensation function that uses a temperature sensor on the main unit of the measuring machine and a temperature sensor for the workpiece.

Hyper QV 404

Model			Hyper QV 302		Hyper QV 404				Hyper QV 606	
Order No.		QV-H302P1L-D	QV-H302T1L-D	QV-H302P1C-D	QV-H404P1L-D	QV-H404T1L-D	QV-H404P1C-D	QV-H606P1L-D	QV-H606T1L-D	QV-H606P1C-D
Measuring range		3	300×200×200 mn	ı	4	400×400×250 mn	1	(600×650×250 mm	
Observation unit*					Programm	able power turret	1X-2X-6X			
Tracking Auto Foo	us device	_	✓	_	_	✓	_	_	✓	_
	Contour illumination		White LED		White LED			White LED		
Illumination unit	Vertical surface illumination	White LED		Color LED	White LED		Color LED	White LED		Color LED
	PRL	White LED		Color LED	White LED		Color LED	White LED		Color LED
Resolution of scal	e	0.02 μm								
	E1x, E1Y		(0.8 + 2L/1000) μm							
Vision measuring accuracy*2	E _{1Z}				(1.5 + 2L/1000) μι	m			
acca. ac _j	E _{2XY}				(1.4 + 3L/1000) μι	m			
LAF Repeatability		_	<i>σ</i> ≤0.8 μm	-	_	σ≤0.8 μm	_	_	<i>σ</i> ≤0.8 μm	_
Models with touch probe		QVT1-H302P1L-D	QVT1-H302T1L-D	QVT1-H302P1C-D	QVT1-H404P1L-D	QVT1-H404T1L-D	QVT1-H404P1C-D	QVT1-H606P1L-D	QVT1-H606T1L-D	QVT1-H606P1C-D
TP measuring accuracy*2	E1x, E1y, E1z				(1.7 + 3L/1000) μι	m			

^{*1} Programmable power turret 1X-2X-4X model and 1X-2X-4X-6X model are available to special order. *2 Determined by Mitutoyo's inspection method.

QV HYBRID TYPE 1

Non-contact Laser Probe-equipped CNC Vision Measuring System

QV Hybrid Type1 Apex 404

•	This complex system with a non-contact displacement sensor has a
	scanning function that enables measurement of minute height differences
	and 3D shapes.

- The double-pinhole technique has been adopted as the detection method of the displacement sensor. It is less directional compared with the knife-edge and triangulation techniques.
- The small laser spot with diameter of about 2 µm makes it possible to measure minute shapes.

		QVH1 302	QVH1 404	QVH1 606	QVH1 302	QVH1 404	QVH1 606	
Model		4 552	Apex	4	Hyper			
Order No.		QVH1-X302P1L-D	QVH1-X404P1L-D	QVH1-X606P1L-D	QVH1-H302P1L-D	QVH1-H404P1L-D	QVH1-H606P1L-D	
Measuring range b	y vision probe	300×200×200 mm	400×400×250 mm	600×650×250 mm	Same as Apex			
Measuring range by d	isplacement sensor	180×200×200 mm	280×400×250 mm	480×650×250 mm		Same as Apex		
Observation unit*				Programmable pov	ver turret 1X-2X-6X			
Illumination unit	Contour illumination							
	Vertical surface illumination	White LED						
	PRL							
Resolution of scal	e		0.1 μm		0.02 μm			
	E1x, E1Y		(1.5 + 3L/1000) μm		(0.8 + 2L/1000) μm			
Vision measuring accuracy*2	E _{1Z}		(1.5 + 4L/1000) μm		(1.5 + 2L/1000) μm			
accuracy -	E _{2XY}		(2.0 + 4L/1000) µm			(1.4 + 3L/1000) μm		
Displacement sensor measuring accuracy	E _{1Z}		(1.5 + 4L/1000) μm			(1.5 + 2L/1000) μm		

^{*1} Programmable power turret 1X-2X-4X model and 1X-2X-4X-6X model are available to special order. *2 Determined by Mitutoyo's inspection method.

QV HYBRID TYPE 4

Non-contact Laser Probe-equipped CNC Vision Measuring System

Hyper QV Hybrid Type4 606

•	This complex	system	with a n	on-conta	ct displ	acemer	nt sensor h	as a sc	anning
	function that	enables	measur	ement of	minute	height	differences	and 31) shapes

- The non-contact displacement sensor (CRS probe) uses the wavelength confocal method.
- The LED used as the light source of the displacement sensor has an auto-brightness control function that enables seamless measurement of materials with different reflectivity.

Madal		QVH4	A 302	QVH4	A 404	QVH4	A 606		Hyper QVH4A		
Model		Apex	STREAM PLUS	Apex	STREAM PLUS	Apex	STREAM PLUS	302	404	606	
Order No.		QVH4A-X302P1L-D	QVH4A-X302P1S-D	QVH4A-X404P1L-D	QVH4A-X404P1S-D	QVH4A-X606P1L-D	QVH4A-X606P1S-D	QVH4A-H302P1L-D	QVH4A-H404P1L-D	QVH4A-H606P1L-D	
Measuring range b	y vision probe	300×200	×200 mm	400×400×250 mm		600×650	×250 mm		Same as Apex		
Measuring range by d	isplacement sensor	176×200	×200 mm	276×400×250 mm		476×650×250 mm			Same as Apex		
Observation unit*	1				Programm	able power turret	t 1X-2X-6X				
STREAM function	STREAM function		✓	_	✓	_	✓	=			
	Contour illumination		Blue LED		Blue LED		Blue LED				
Illumination unit	Vertical surface illumination PRL	White LED	Color LED	White LED	Color LED	White LED	Color LED		White LED		
Resolution of scal	e			0.1	μm		0.02 μm				
\tag{\text{\tin}\text{\tint{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin\tint{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\ticl{\tinit}\\ \tint{\text{\text{\ti}\tittt{\text{\text{\text{\text{\ti}\tint{\text{\text{\tin}\tint{\text{\text{\text{\text{\texi}\tittit{\text{\text{\text{\text{\ti}\tittit{\text{\text{\tin}\tittt{\text{\text{\text{\text{\titil\tint{\text{\texit{\text{\ti}\tint{\tint{\tint}\tint{\text{\tiin}\tiint{\tint}\tint{\tint}\ti	E1x, E1Y			(1.5 + 3L/	(1.5 + 3L/1000) μm				(0.8 + 2L/1000) μm		
Vision measuring accuracy*2	E _{1Z}			(1.5 + 4L/	/1000) μm			(1.5 + 2L/1000) μm			
accuracy	E _{2XY}	(2.0 + 4L/1000) μm						(1.4 + 3L/1000) μm			
Displacement sensor measuring accuracy	E _{1Z}			(1.5 + 4L/	/1000) μm	(1.5 + 4L/1000) µm			(1.5 + 2L/1000) μm		

^{*1} Programmable power turret 1X-2X-4X model and 1X-2X-4X model are available to special order. *2 Determined by Mitutoyo's inspection method.

QV STREAM PLUS

Non-stop CNC Vision Measuring System

QV STREAM PLUS 606

•	The main unit operation and the strobe light are	
	synchronized to enable vision measurement	
	without stopping the stage. As it is unnecessary	
	to increase or decrease the stage speed,	
	measurement becomes 5X faster than	D
	conventional models depending on the object	
	type. (Compared with our conventional models.)	

		1
	reducing the measurement time significantly.	
	measurement by adapting to height differences, thus	
_	The model with tracking auto locus performs continuous	

Model	QV STREAM	M PLUS 302	QV STREAM	M PLUS 404	
71					
type. (Compared with our conver	ntional models.)				
conventional models depending	on the object	Camera	Continuous displacement	Camera	

Model		QV STREAM PLUS 302		QV STREAM	N PLUS 404	QV STREAM PLUS 606					
Order No.		QV-X302P1S-D	QV-X302T1S-D	QV-X404P1S-D	QV-X404T1S-D	QV-X606P1S-D	QV-X606T1S-D				
Measuring range		300×200×200 mm		400×400×250 mm		600×650×250 mm					
Observation unit*1			Programmable power turret 1X-2X-6X								
Tracking Auto Focus	s device	_	✓	-	✓	-	✓				
Illumination unit	Contour illumination		Blue LED								
	Vertical surface illumination	Color LED									
	PRL	Color LED									
Resolution of scale		0.1 µm									
Vision	E1x, E1Y		(1.5 + 3L/1000) µm								
Vision measuring accuracy*2	E _{1Z}			(1.5 + 4L/	/1000) μm						
accuracy -	E _{2XY}			(2.0 + 4L)	/1000) μm						
LAF Repeatability		_	σ≤0.8 μm	_	σ≤0.8 μm	_	σ≤0.8 μm				

^{*1} Programmable power turret 1X-2X-4X model and 1X-2X-4X-6X model are available to special order. *2 Determined by Mitutoyo's inspection method.

Hyper QV WLI

Non-contact 3D Measuring System

• Hyper QV WLI is a high-accuracy complex 3D measurement system consisting of QV and a white light interferometer.

● You can perform 3D surface texture analysis and 3D roughness analysis from 3D data captured by the WLI optical system. You can also perform dimension measurement and cross-section measurement at a specific height using the 3D data.

Model		Hyper QV WLI 302	Hyper QV WLI 404	Hyper QV WLI 606						
Order No.		QVW-H302P1L-D	QVW-H404P1L-D	QVW-H606P1L-D						
Measuring range	Vision measurement	300×200×190 mm	400×400×240 mm	600×650×220 mm						
0 0	WLI measurement	215×200×190 mm	315×400×240 mm	515×650×220 mm						
Observation unit*1			Programmable power turret 1X-2X-6X							
	Contour illumination		White LED							
Illumination unit	Vertical surface illumination	White LED								
	PRL	White LED								
	WLI optical head	Halogen								
Resolution of scale		0.01 μm								
	E1x, E1Y	(0.8 + 2L/1000) µm								
Vision measuring accuracy*2	E _{1Z}	(1.5 + 2L/1000) μm								
accuracy	E _{2XY}	(1.4 + 3L/1000) µm								
WLI Z-axis scanning range (max)		QV WLI A-5X, QV WLI A-10X: 6.3 mm, QV WLI A-25X: 3.2 mm, QV WLI A-50X: 1.0 mm								
WLI Z-axis repeata	ability*2	2д≤0.08 µm								

^{*1} Programmable power turret 1X-2X-4X model and 1X-2X-4X-6X model are available to special order. *2 Determined by Mitutoyo's inspection method.

QV ACCEL

CNC Vision Measuring System

QV ACCEL 808

•	This is a vision measuring machine with moving-bridge type main $ \\$
	unit structure suitable for measuring large objects.

- As the stage is immobile on the moving-bridge structure, you can use a simple method to fix a workpiece, which is suitable for measuring small, thin objects.
- QV ACCEL 1212 (range: 1250×1250×100 mm) and QV ACCEL 1517 (range: 1500×1750×100 mm) are available to special order.

Model		QV ACCEL 808	QV ACCEL 1010					
Order No.		QV-A808P1L-D	QV-A1010P1L-D					
Measuring range		800×800×150 mm	1000×1000×150 mm					
Observation unit*	1	Programmable pow	ver turret 1X-2X-6X					
	Contour illumination	White	e LED					
Illumination unit	Vertical surface illumination	White LED						
	PRL	White LED						
Resolution of scal	e	0.1 μm						
	E1x, E1Y	(1.5 + 3L)	/1000) μm					
Vision measuring accuracy*2	E _{1Z}	(1.5 + 4L/1000) µm						
acca. ac _j	E _{2XY}	(2.5 + 4L/1000) µm						
Repeatability*2	Short dimension X, Y axis	3σ=0).2 μm					
Repeatability 1	Long dimension	3σ=0).7 µm					

^{*1} Programmable power turret 1X-2X-4X model and 1X-2X-4X-6X model are available to special order.

ULTRA QV

Ultra-high Accuracy CNC Vision Measuring System

ULTRA QV404

\bullet Ultra-high accuracy CNC vision measuring machine with measuring
accuracy of E_{1XY} (0.25 + L/1000) μ m.

- Our proprietary high-resolution (0.01 μm) and high-accuracy low-expansion glass scales are used on the X, Y and Z axes.
- The high-rigidity Y-axis table moving mechanism with fixed bridge has been adopted. The base is made of high stability granite.

Model		ULTRA QV404						
Order No.		QV-U404P1N-D	QV-U404T1N-D					
Measuring range		400×400×200 mm						
Observation unit*		Programmable pov	ver turret 1X-2X-6X					
Tracking Auto Focus device		_	✓					
	Contour illumination	Halogen						
Illumination unit	Vertical surface illumination	Halogen						
	PRL	Halogen						
Resolution of scal	e	0.01 μm						
	E1x, E1Y	(0.25 + L)	/1000) µm					
Vision measuring	E _{1z} (50 mm stroke)	(1.0 + 2L/1000) µm						
accuracy*2	E _{1Z} (Full stroke)	(1.5 + 2L/1000) μm						
	E _{2XY}	(0.5 + 2L)	/1000) µm					
LAF Repeatability		_	σ≤0.8 μm					

^{*1} Programmable power turret 1X-2X-4X model and 1X-2X-4X-6X model are available to special order. *2 Determined by Mitutoyo's inspection method.

^{*2} Determined by Mitutoyo's inspection method. Short dimension=Repeatability within a single screen; Long dimension=Repeatability over several screen movements.

OPTIONS

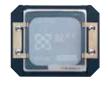
QV Objectives

QV objectives

Objective		QV-SL0.5X*	QV-HR1X	QV-SL1X	QV-HR2.5X	QV-SL2.5X	QV-HR5X	QV-5X	QV-HR10X*	QV-10X*	QV-25X*
Order No.		02AKT199	02AKT250	02ALA150	02AKT300	02ALA170	02AWD010	02ALA420	02AKT650	02ALG010	02ALG020
Set of objectives that	t support PFF	_	_	-	02AKX895	-	-	02AKX900	02AKX905	-	02AKX910
Working distance		30.5 mm	40.6 mm	52.5 mm	40.6 mm	60.0 mm	20.0 mm	33.5 mm	20.0 mm	30.5 mm	13.0 mm
Field of view	Turret 1X	12.54×9.4	6.27	×4.7	2.49>	<1.86	1.24>	×0.93	0.62×0.47		0.25×0.18
(H)×(V)	Turret 2X	6.27×4.7	3.13	×2.35	1.24>	<0.93	0.62>	×0.47	0.31>	<0.23	0.12×0.09
(П/^(V)	Turret 6X	2.09×1.56	1.04	<0.78	0.41×0.31		0.20×0.15		0.10×0.07		0.04×0.03

^{*} When the QV-SL0.5X, QV-HR10X, QV-10X, or QV-25X objective is used, some limitations, such as the illumination being insufficient depending on the workpiece, may occur.

Overall magnification with objective/turret combinations


Monitor magnification*1	15X	29X	58X	72X	87X	144X	173X	290X	430X	580X	720X	870X	1440X	1730X	4300X
Field of view [mm]	12.54×9.40	6.27×4.70	3.13×2.35	2.49×1.86	2.09×1.56	1.24×0.93	1.04×0.78	0.62×0.47	0.41×0.31	0.31×0.23	0.25×0.18	0.20×0.15	0.12×0.09	0.10×0.07	0.04×0.03
0.5X objective	•	•			•								,		
1X objective		•	•				•								
2.5X objective				•		•			•						
5X objective						•		•				•			
10X objective*2								•		•			•	•	
25X objective*2											•		•		•

^{*1} The monitor magnification is a reference value when an image is displayed at 1X screen magnification on a 22-inch wide LCD monitor. QVPAK version 10 or later supports changing of video window size.

Calibration Chart and QV Compensation Chart

Calibration chart

A calibration chart is used to compensate for the pixel size of the CCD chip and for the auto focus accuracy and optical axis offset at each magnification of the variable magnification unit (PPT).

QV compensation chart

This glass chart is used to perform compensation for distortions within the screen caused by the optical system, and auto focus compensation, which reduces auto focus variations that are caused by differences between the workpiece pattern and texture.

Note: There are limitations on the function, depending on the lens. For details, contact your Mitutoyo sales office.

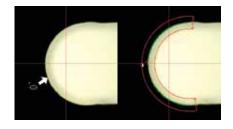
Note: There are limitations on the function, depending on the lens. For details, contact your Mitutoyo sales office.

^{*2} When using a 10X or 25X objective lens in conjunction with a 2X or 6X power turret, brightness illumination may be insufficient depending on the workpiece.

SOFTWARE

Application software that offers both functionality and operability

In addition to high-performance vision measuring functions, we offer a wide range of software applications such as shape analysis using a non-contact displacement sensor and automatic creation of measurement programs. From simple to complex measurements, our lineup can resolve any measurement issues that our customers may encounter.



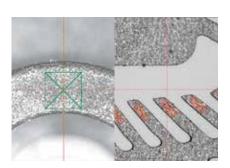
A rich choice of measuring functions

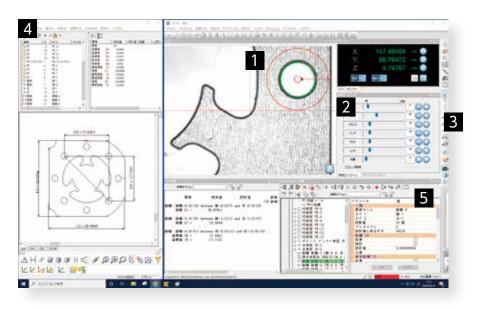
1 One-click Tool

Whatever your proficiency level, this function enables you to perform high-accuracy measurements by simply selecting the measurement item (circle, line, etc.) and clicking the edge to measure once. The abnormal point removing function automatically removes traces of burrs and contaminants.

2 AI Illumination Tools

There are two tools: the dual area contrast tool, which can adjust the light intensity to the optimal value at procedure creation time, and the brightness tool, which automatically compensates the light intensity at program creation time. These tools stabilize the light intensity during repeat measurements, which increases edge detection repeatability and reduces the occurrence of edge detection errors caused by light intensity fluctuations.



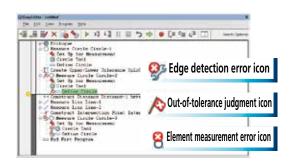


Brightness Tool Dual Area Contrast Tool

3 Multi-point Auto Focus

You can subdivide an auto focus tool or set up multiple auto focus tools at desired sizes, positions and angles.

4 QV Graphics


Not only can this feature be used for reports of measurement results but also high-level calculations such as calculations between elements and PCD measurements can be performed by selecting diagrams with the mouse. In addition, effective use of the graphics function makes it possible to easily edit part programs and is also useful in checking the coordinate system of the current workpiece and in checking for any forgotten measurements.

5 QV EasyEditor

 $\ensuremath{\mathsf{QV}}$ Easy Editor records and allows you to easily edit the details of the operator's operation.

The program list displays error icons for you to quickly find the parts to correct.

OPTIONAL SOFTWARE

FORMTRACEPAK-AP

Form Evaluation and Analysis Software

FORMTRACEPAK-AP performs tolerancing and form analysis from data obtained with the QV's auto trace tool, non-contact displacement sensor, HQV WLI, and PFF.

Contour Tolerancing Function

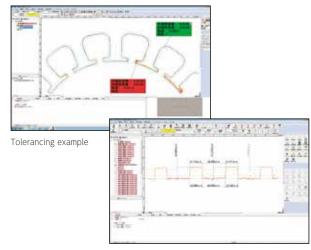
· Design data creation

CAD data conversion, master workpiece conversion, function specification, text file conversion, and aspherical surface design value creation

Tolerancing

Normal vector direction tolerancing, axial direction tolerancing, and best-fit tolerancing

Microscopic Form Analysis


- Analyzed items: point measurement, line measurement, circle measurement, distance measurement, intersection measurement, angle measurement, origin setting, and axial rotation
- \cdot Calculated items: maximum, minimum, average, standard deviation, and area

Report Creation Function

· Measurement result, error graph, and error developed view

Other Functions

- · Recording and executing analysis procedures
- · External output function:
- CSV, text or DXF/IGES format output

Example of using HQV WLI to perform line and space and conductor thickness measurements on a printed circuit board

MCubeMap

3D Surface Property Analyzing Software

3D data captured by QV WLI can be analyzed according to parameters compliant with JIS B681-2: 2018 (ISO25178-6: 2010), including Sa, Sq and other height parameters and 3D roughness parameters related to space, complexity and functionality.

You can also analyze 2D shapes and measure volumes from the 3D data captured by PFF or QV Hybrid.

3D analysis of the above shape captured by PFF

FORMTRACEPAK-PRO

Form Evaluation and Analysis Software

3D data captured by QV WLI can be analyzed for 3D surface roughness and surface texture. You can also analyze the displayed 3D shape information captured by the non-contact displacement sensor of PFF or QV Hybrid.

Main Functions

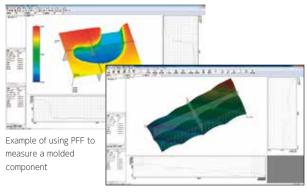
3D display

Wire frame, shading, contour line, contour line filling

• Trend compensation and filter processing

 $\label{thm:compensation} Trend\ compensation\ using\ flat\ surfaces,\ spherical\ surfaces,\ cylindrical\ surfaces,\ and\ polyhedrons$

1D and 2D digital filters for each profile


· Digitization of a rich variety of surface textures

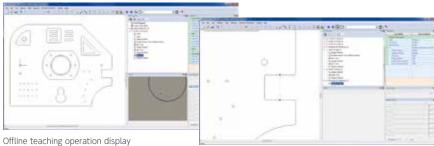
Relative load curves and area distribution curves can be used to evaluate wear and oil accumulation areas.

Spectral analysis, cutoff area and volume analysis, angle of inclination calculations at peaks and valleys, and histogram calculations of numbers of valleys can be performed.

• Function for extracting features from measurement data

Extraction of a chosen cross section, slope enhancement, and simultaneous analysis of the peaks and valleys of the cutoff surface can be performed.

Example of using QVH4 to perform acrylic lens array measurements

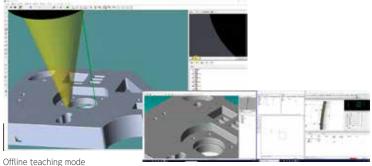


EASYPAG-PRO (DXF) (GERBER data)

Offline Teaching Software

EASYPAG-PRO can use 2D CAD data to create QVPAK part programs in an offline manner.

This reduces the number of man-hours required to create part programs, which results in a decrease in lead time.

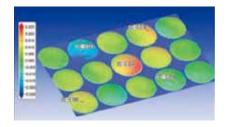


Line-to-arbitrary point distance measurement

QV3DCAD

Creates a QV PAK part program from a 3D CAD model.

The current version supports two modes: the online mode that allows you to teach while monitoring the actual workpiece by synchronizing the software with the QV system, and the offline mode that allows you to create a part program on a PC not connected to the main unit.

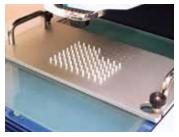


Online teaching mode

MSURF-I

Compares the 3D data captured by QV Hybrid, QV WLI and PFF with the design data of the 3D CAD model, etc.

Note: A separate PC is necessary for MSURF-I analysis.


QV3DPAK

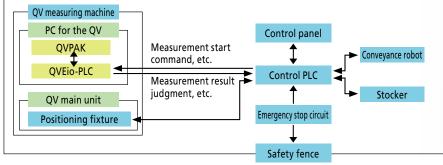
QV3DPAK is a software application that composes 3D forms from PFF (Point From Focus) or WLI (White Light Interferometer) data.

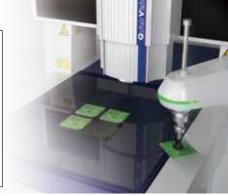
QVPartManager

QVPartManager is the part program execution management software for multiple workpieces arranged on the QV stage.

Workpieces arranged on a dedicated fixture

0	10	×			20	#	-	×	m	*
					10	78				
	W	98	M.							
1	100	4.							git.	16
0	10.	生	20	70	2	70	-	36	34	A
0	14	Ties	10	int	4	-			+	-
4	216	94	14	19	114	**	**	19	110	944
0	int.	570	14	14	114	94	**	-	-	246
2	\$146	94	74	115	14	9%	24	Tel	64	24
	114	-	ès	is	96	**	14	99	id	415
15			ñ			1				
(B)	Sen)	151								


QVPartManager screen



QVEio

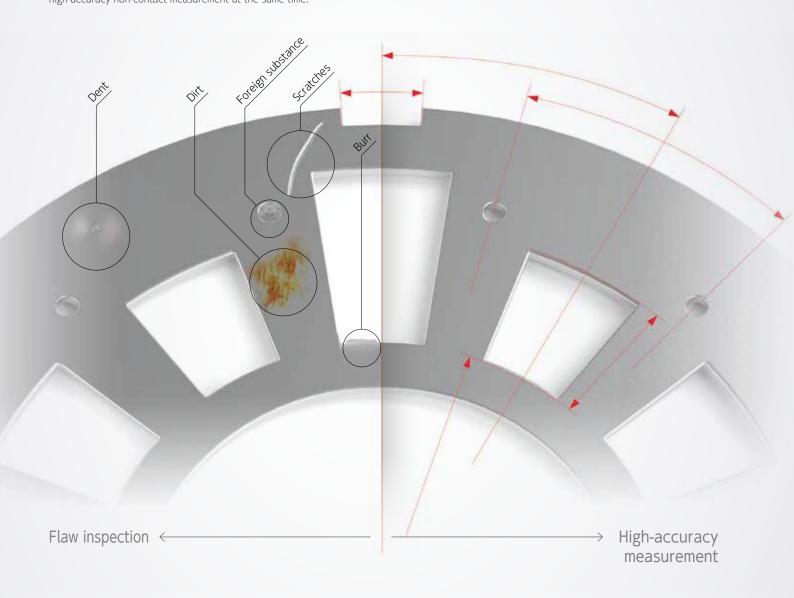
IO application making the smart factory real


Status Monitor

- status data
- Supports MT Connect communication

MeasurLink

Reduces defective products by visualizing quality

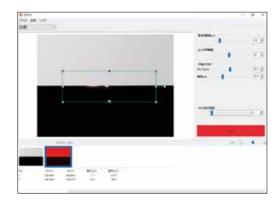


//SPECTION

"DDPAK" - software for the Quick Vision Series that enables both flaw inspection and high-accuracy measurement

DDPAK is flaw inspection software for Quick Vision.

Use it during measurement to inspect for flaws, such as contaminants, burrs and cracks while performing high-accuracy non-contact measurement at the same time.


DDPAK

CNC Vision Measuring System Dedicated for Quick Vision

Flaw Inspection Software

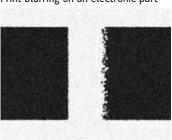
■ Features

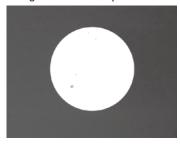
- Creates a seamless flaw inspection system that transfers the image data captured by the Quick Vision Series to DDPAK, outputs the flaw coordinates and automatically saves the image.
- Measures the dimensions of a flaw and analyzes its shape. Analyzing the coordinate, size, depth, height and other statistics of a flaw can help analyze the cause, prevent recurrence, and improve the production process.
- You can add DDPAK, the flaw inspection software, to your Quick Vision. Add the inspection feature to expand the applications of your Quick Vision.

The image of the detected flaw turns red

Chipped blade

■ Flaw detection example


Chip on glass



Print blurring on an electronic part

Foreign substance in a pore

Scratched mirror-finished surface

Note: DDPAK is available to special order. For details on supported workpieces and flaws, contact your local Mitutoyo sales office.

Whatever your challenges are, Mitutoyo supports you from start to finish.

Mitutoyo is not only a manufacturer of top quality measuring products but one that also offers qualified support for the lifetime of the equipment, backed up by comprehensive services that ensure your staff can make the very best use of the investment.

Apart from the basics of calibration and repair, Mitutoyo offers product and metrology training, as well as IT support for the sophisticated software used in modern measuring technology. We can also design, build, test and deliver bespoke measuring solutions and even, if deemed cost-effective, take your critical measurement challenges in-house on a sub-contract basis.

Find additional product literature and our product catalogue

https://www.mitutoyo.co.jp/global.html

Our products are classified as regulated items under Japanese Foreign Exchange and Foreign Trade Law.

Please consult us in advance if you wish to export our products to any other country.

If the purchased product is exported, even though it is not a regulated item (Catch-All controls item), the customer service available for that product may be affected. If you have any questions, please consult your local Mitutoyo sales office.

Note: Product illustrations are without obligation. Product descriptions, in particular any and all technical specifications, are only binding when explicitly agreed upon.

MITUTOYO and MICAT are either registered trademarks or trademarks of Mitutoyo Corp. in Japan and/or other countries/regions. Other product, company and brand names mentioned herein are for identification purposes only and may be the trademarks of their respective holders.

Mitutoyo Corporation

20-1, Sakado 1-Chome, Takatsu-ku, Kawasaki-shi, Kanagawa 213-8533, Japan T +81 (0) 44 813-8230 F +81 (0) 44 813-8231

https://www.mitutoyo.co.jp